等离子弧焊接和切割: 1.1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达105~106W/cm2 ,电弧温度可高达~5000K(一般自由状态的钨极氩弧焊最高温度为~K,能量密度在104W/cm2 以下)能迅速熔化金属材料,可用来焊接和切割。 (2)等离子弧的产生 等离子弧发生装置如图6-4-1所示。 在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。 ①机械压缩效应(作用)——电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。 图6-4-1 等离子弧发生装置原理图 ②热压缩效应——当通入一定压力和流量的氩气或氮气时,冷气流均匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。 ③电磁收缩效应——定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。 电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧。 当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为“刚性弧”,主要用于切割金属。反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为“柔性弧”,主要用于焊接。 1.2 等离子弧焊接 1.2.1 基本知识 用等离子弧作为热源进行焊接的方法称为等离子孤焊接。 焊接时离子气(形成离子弧)和保护气(保护熔池和焊缝不受空气的有害作用)均为氩气。 等离子弧焊所用电极一般为钨极(与钨极氩弧焊相同,国内主要采用钍钨极和铈钨极,国外还采用锆钨极和锆极),有时还需填充金属(焊丝)。一般均采用直流正接法(钨棒接负极)。磁选工。故等离子弧焊接实质上是一种具有压缩效应的钨极气体保护焊。 1.2.2 等离子弧焊接的分类: 等离子弧焊可分为大电流等离子弧焊和微束等离子弧焊等 (1)大电流等离子孤焊:有两种工艺:一种为穿孔型等离子弧焊,一种为熔入型等离子弧焊。 ①穿孔型等离子弧焊:蒸汽加气块砖设备 。 在等离子能量密度足够和等离子流力够大等条件下焊接,产生穿透小孔,熔化金属被排挤在小孔周围和后方,随着等离子弧前移,小孔也前移,该现象叫小孔效应。该焊接工艺方法称为穿孔型等离子弧焊。 其焊接过程如图6-4-2所示。 图6-4-2 穿孔型等离子弧焊接 穿孔型离子弧焊可保证完全焊透,一般大电流等离子弧焊(100~300A)大都采用此方法。但穿孔效应只有在足够的能量密度条件下形成,且能量密度的提高受到限制,故该方法只能在有限板厚内进行——目前生产应用的板厚范围为: 碳钢7mm,不锈钢8~10mm,钛10~12mm。 该方法最适合于焊接3~8mm不锈钢,12mm以下钛合金,2~6mm低碳或低合金结构钢,以及铜、黄铜、镍及镍基合金的对接缝。 ②熔入型等离子弧焊——当离子气流量减小,穿孔效应消失时采用。 该方法同一般钨极氩弧焊相似。 该方法适用于薄板,多层焊缝的盖面及角焊缝,可填加或不填加焊丝,其优点为焊速较快。 (2)微束等离子弧焊:指15A~30A以下的熔入型等离子弧焊 微束等离子弧焊的等离子弧喷射速度和能量密度较小,比较柔和,可用于焊接0.025~2.5mm的箔材及薄板。 1.2.3 等离子弧焊接的特点及应用: 特点: (1)微束等离子弧焊可以焊接箔材和薄板。 (2)具有小孔效应,能较好实现单面焊双面自由成形。(3)等离子弧能量密度大,弧柱温度高,穿透能力强,10~12mm厚度钢材可不开坡口,能一次焊透双面成形,焊接速度快,生产率高,应力变形小。 (4)设备比较复杂,气体耗量大,只宜于室内焊接。 应用:广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。 (责任编辑:admin) |